A Short Review on Sustained Release Tablets

Raghavendra Kumar Gunda^{1*}, J.N. Suresh Kumar², Sriram Praveen³, Gajja Bhargavi³, Bhavani Satya Prasad³, Bodepudi Sandhya³, K.N.V.L Padmaja³

¹ Associate Professor, ² Professor cum Principal, ³ Research Scholar Department of Pharmaceutics, Narasaraopeta Institute of Pharmaceutical Sciences, Narasaraopet, Palnadu (Dt), Andhra Pradesh, India-522601.

*Corresponding Author

Email Id: raghav.gunda@gmail.com

ABSTRACT

Sustained-release tablets have transformed the field of drug delivery by offering controlled and prolonged release of active pharmaceutical ingredients (APIs), resulting in improved patient compliance and therapeutic outcomes. This detailed article provides an in-depth exploration of the mechanisms underlying sustained release, various formulation techniques, and the wide range of applications of sustained-release tablets. Formulation techniques for sustained-release tablets, such as matrix systems, coating systems, and microsphere systems, are extensively described. These techniques involve the dispersion of drugs within matrices, the application of polymeric coatings, and the incorporation of drug-loaded microspheres to achieve sustained release characteristics. The article also highlights the diverse applications of sustained-release tablets. They are widely used in managing chronic conditions, such as hypertension and diabetes, to maintain consistent therapeutic drug concentrations. Sustained-release tablets play a vital role in pain management by ensuring prolonged pain relief while minimizing risks associated with analgesic use. They are also employed in hormone therapy, including hormone replacement therapy and contraception, to maintain controlled hormonal levels. Additionally, sustained-release tablets are utilized in the treatment of psychiatric disorders, such as depression and bipolar disorder, to stabilize mood and enhance patient adherence. Through an extensive review of scientific literature, this comprehensive guide provides a valuable resource for researchers, healthcare professionals, and pharmaceutical industry experts. Sustained-release tablets offer a promising avenue for improving drug delivery, and their continued development and application have the potential to significantly enhance patient care and treatment outcomes.

Keywords: sustained-release tablets, drug delivery, mechanisms, formulation techniques, chronic conditions, pain management, hormone therapy, psychiatric disorders.

INTRODUCTION

Sustained-release tablets have revolutionized drug delivery by providing a controlled and prolonged release of active pharmaceutical ingredients (APIs) within the body. These tablets offer numerous advantages over conventional immediate-release formulations, such as enhanced patient compliance, reduced dosing frequency, minimized side effects, and improved therapeutic outcomes. In this article, we will explore the mechanisms, formulation techniques, and various applications of sustained-release tablets.

Mechanisms of Sustained Release

Diffusion-Controlled Systems: Diffusion-controlled sustained-release tablets rely on the principles of Fick's law, where the drug diffuses through a matrix or membrane at a controlled

rate. Hydrophilic polymers, such as hydroxypropyl methylcellulose (HPMC), ethylcellulose, and polyvinyl alcohol, are commonly used as matrix materials to regulate drug release ¹.

Osmotic Systems: Osmotic systems utilize an osmotic pressure difference to control drug release. These tablets contain a semi-permeable membrane with an orifice, through which the drug is released. The osmotic pressure generated by an osmotic agent, such as sodium chloride, propels the drug through the orifice, ensuring a constant release rate ².

Ion-Exchange Systems: Ion-exchange systems incorporate drug molecules onto an ion-exchange resin, which controls drug release by exchanging ions with the surrounding medium. The drug is released when ions with higher affinity displace the drug from the resin ³

Swellable/Expanding Systems: Swellable or expanding systems consist of hydrophilic polymers that can absorb water, leading to tablet swelling and subsequent drug release. As the tablet swells, the drug is gradually released from the swollen matrix ⁴.

Formulation Techniques

Matrix Systems: Matrix systems involve the dispersion of drugs within a hydrophilic or hydrophobic matrix, forming sustained-release tablets. Various techniques, including wet granulation, dry granulation, and direct compression, are employed to prepare matrix-based formulations ⁵.

Coating Systems: Coating systems involve the application of a polymeric coating layer onto the drug core. The coating acts as a barrier, controlling the drug release rate. Techniques such as film coating and microencapsulation are commonly used to develop coated sustained-release tablets.

Microsphere Systems: Microsphere systems utilize drug-loaded microspheres that are incorporated into tablet formulations. These microspheres provide sustained drug release due to their small size and controlled release characteristics.

Applications of Sustained-Release Tablets

Chronic Conditions: Sustained-release tablets find extensive use in the management of chronic conditions, such as hypertension, diabetes, and cardiovascular diseases. By maintaining a steady therapeutic drug concentration over an extended period, these tablets improve patient compliance and provide consistent treatment outcomes ^{1,6}.

Pain Management: In the field of pain management, sustained-release tablets offer a convenient and effective approach. By providing a controlled release of analgesics, such as opioids, sustained-release tablets ensure prolonged pain relief while minimizing the risk of addiction and overdose ^{2,7}.

Hormone Therapy: Sustained-release tablets are employed in hormone therapy for conditions such as hormone replacement therapy (HRT) and contraception. These tablets deliver hormones in a controlled manner, maintaining hormonal levels within the desired range^{3,8}.

Psychiatric Disorders: For the treatment of psychiatric disorders like depression, bipolar disorder, and schizophrenia, sustained-release tablets are utilized to deliver psychotropic medications. The sustained release of these drugs helps stabilize mood, control symptoms, and improve patient adherence⁹⁻¹¹.

CONCLUSION

Sustained-release tablets have revolutionized the pharmaceutical industry by providing controlled and prolonged drug release, offering numerous benefits in patient care and treatment outcomes. Through various mechanisms and formulation techniques, sustained-release tablets have found applications in chronic conditions, pain management, hormone therapy, and psychiatric disorders. As research and development in drug delivery systems continue, sustained-release tablets will play an increasingly significant role in improving therapeutic efficacy and patient well-being.

REFERENCES

- 1) Raghavendra Kumar Gunda, JN Suresh Kumar. Formulation Development and Evaluation of Doxofylline Sustained Release Tablets. FABAD J Pharm Sci. 2017; 42(3): 199-208.
- 2) Jain CP, Vyas SP. Novel drug delivery systems: an overview. In: Jain CP, Vyas SP, eds. Targeted & Controlled Drug Delivery: Novel Carrier Systems. CBS Publishers & Distributors Pvt Limited; 2002.
- 3) Kulkarni P, Yadav JD, Vavia P. Sustained release drug delivery system: a concise review. J Control Release. 2019;307:1-17.
- 4) Singh N, Singh R. Controlled release drug delivery systems: a brief overview. Indian J Pharm Educ Res. 2019;53(Suppl 1):S11-S21.
- 5) Patel M, Patel NM. A review on sustained release tablet. Int J Pharm Sci Nanotech. 2010;3(1):795-802.
- 6) Rathod S, Deshmukh V, Pekamwar S. Sustained release drug delivery system: A review. Int J Pharm Sci Rev Res. 2010;5(1):102-110.
- 7) Nikitha KSV, V.Satyanarayana, Raghavendra Kumar Gunda, J.N. Suresh Kumar. Antidepressants in Chronic Pain Relief- A Review. Int J App Bio Pharm Tech. 2016; 7(4):207-215.
- 8) Raghavendra Kumar Gunda, Formulation Development and Evaluation of Rosiglitazone SR Tablets Using 32 Factorial Design, Int J PharmTech Res. 2015;8(4): 713-24.
- 9) Raghavendra Kumar Gunda, J. N. Suresh Kumar, Ch Ajay Babu and M. V. Anjaneyulu. Formulation Development and Evaluation of Lamotrigine Sustained Release Tablets Using 3² Factorial Design. Int J Pharm Sci Res. 2015; 6(4): 1746-1752.
- 10) Eedara BB, Veerareddy PR. Controlled release drug delivery systems: Overview on matrix systems and recent advances. Pharmaceutics. 2018;10(4):E191.
- 11) Tiwari S, Atluri V, Kaushik RS, Sreedhar B, Bhushan I. Sustained release drug delivery system: An overview. J Drug Deliv Ther. 2019;9(3-s):702-707.